Function reference
-
extRactoR()
- Extract and compress all needed information from Gaussian log files.
-
unwRapper()
- Unwrapper for feather files
-
moleculaR()
- User interface for the extraction of all possible features
-
moleculaR.input()
- User function for the extraction of all possible features based on a ready input file
-
dip.gaussian.multi()
- Pulls and manipulates dipole moment vector. Allows for use of several substructures.
-
mol.angles.multi()
- Compute several angles and dihedrals in a set of molecules
-
npa.dipole.subunit.multi()
- Compute NBO based DM for several substructures
-
ring.vib.multi()
- Get a ring's characteristic vibrations frequencies
-
steRimol.multi()
- Verloop's sterimol values from moleculaR's csv files
-
steRimol.xyz.multi()
- Verloop's sterimol values from xyz files
-
atoms.distance.df()
- Compute atom distances of a set of molecules
-
bend.vib.df()
- Get bending vibrations frequencies for a set of molecules
-
dip.gaussian.df()
- Pulls and manipulates dipole moment vector.
-
nbo.df()
- Pull NBO charges for specific atoms
-
polar.df()
- Pull polarizability info for a set of molecules
-
ring.vib.df()
- Get a ring's characteristic vibrations frequencies, for a set of molecules
-
steRimol.cube.df()
- Compute cube based sterimol parameters
-
steRimol.df()
- Verloop's sterimol values from moleculaR's csv files
-
steRimol.xyz.df()
- Verloop's sterimol values from xyz files
-
stretch.vib.df()
- Get a bond's stretching frequency for a set of molecules
-
steRimol.cube()
- Compute cube based sterimol parameters
-
xyz.from.cube()
- Extract xyz file from Gausssian cube file
-
plot_molecule()
- Generate a 3D plot of an xyz file, including atom indices
-
model.cv()
- Cross validate (k-fold) a single model
-
model.plot()
- ggplot2 plot of a linear model for QSAR
-
model.report()
- Generate models and a plot
-
model.report.log.ordinal()
- Generate a model report - ordinal logistic regression
-
model.report.logistic()
- Generate a model report - logistic regression
-
model.subset()
- Brute force model search with a min and max number of features.
-
model.subset.log.ordinal()
- Get ordinal logistic models of all feature subsets within a scope
-
model.subset.logistic()
- Get logistic models of all feature subsets within a scope
-
mod.info.log.ordinal()
- Model summary - ordinal model
-
mod.info.logistic()
- Model summary - logistic model
-
ct.plot()
- Create a nice classification table (confusion matrix)
-
prob.heatmap()
- Create a nice probabilities of predictions table
-
simi.sampler()
- a similarity based sampling algorithm
-
coor.trans.file()
- Transform coordinate system for a file of choice
-
extract.connectivity()
- Create a bonding data frame
-
name_changer()
- Change names of files in a directory, based on a matched pattern.