Function reference
-
extRactoR() - Extract and compress all needed information from Gaussian log files.
-
unwRapper() - Unwrapper for feather files
-
moleculaR() - User interface for the extraction of all possible features
-
moleculaR.input() - User function for the extraction of all possible features based on a ready input file
-
dip.gaussian.multi() - Pulls and manipulates dipole moment vector. Allows for use of several substructures.
-
mol.angles.multi() - Compute several angles and dihedrals in a set of molecules
-
npa.dipole.subunit.multi() - Compute NBO based DM for several substructures
-
ring.vib.multi() - Get a ring's characteristic vibrations frequencies
-
steRimol.multi() - Verloop's sterimol values from moleculaR's csv files
-
steRimol.xyz.multi() - Verloop's sterimol values from xyz files
-
atoms.distance.df() - Compute atom distances of a set of molecules
-
bend.vib.df() - Get bending vibrations frequencies for a set of molecules
-
dip.gaussian.df() - Pulls and manipulates dipole moment vector.
-
nbo.df() - Pull NBO charges for specific atoms
-
polar.df() - Pull polarizability info for a set of molecules
-
ring.vib.df() - Get a ring's characteristic vibrations frequencies, for a set of molecules
-
steRimol.cube.df() - Compute cube based sterimol parameters
-
steRimol.df() - Verloop's sterimol values from moleculaR's csv files
-
steRimol.xyz.df() - Verloop's sterimol values from xyz files
-
stretch.vib.df() - Get a bond's stretching frequency for a set of molecules
-
steRimol.cube() - Compute cube based sterimol parameters
-
xyz.from.cube() - Extract xyz file from Gausssian cube file
-
plot_molecule() - Generate a 3D plot of an xyz file, including atom indices
-
model.cv() - Cross validate (k-fold) a single model
-
model.plot() - ggplot2 plot of a linear model for QSAR
-
model.report() - Generate models and a plot
-
model.report.log.ordinal() - Generate a model report - ordinal logistic regression
-
model.report.logistic() - Generate a model report - logistic regression
-
model.subset() - Brute force model search with a min and max number of features.
-
model.subset.log.ordinal() - Get ordinal logistic models of all feature subsets within a scope
-
model.subset.logistic() - Get logistic models of all feature subsets within a scope
-
mod.info.log.ordinal() - Model summary - ordinal model
-
mod.info.logistic() - Model summary - logistic model
-
ct.plot() - Create a nice classification table (confusion matrix)
-
prob.heatmap() - Create a nice probabilities of predictions table
-
simi.sampler() - a similarity based sampling algorithm
-
coor.trans.file() - Transform coordinate system for a file of choice
-
extract.connectivity() - Create a bonding data frame
-
name_changer() - Change names of files in a directory, based on a matched pattern.